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Abstract

The aeroheating characteristics of the X-38 Revision 3.1 configuration

have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel.
Global surface heat transfer distributions, surface streamline patterns, and shock

shapes were measured on a O.0362-scale model of a proposed Space Station Crew
Return Vehicle at Mach 6 in air. Parametric variations include angles,of-attack

of 20 °, 30 °, and 40°; Reynolds numbers based on model length of 0.9 to 3.7

million" and body-flap deflections of 0 o,20 °, 25 °, and 30 °. The effects of discrete

roughness elements, which included trip height, location, size, and orientation,

as well as multiple-trip parametrics, were investigated. This document is

intended to serve as a quick release of preliminary data to the X-38 program;

analysis is limited to observations of the experimental trends in order to expedite
dissemination.

Introduction

The International Space Station is currently scheduled to be fully operational by June, 2002, ushering in a new

era of space exploration and space-based scientific research. When complete, the Space Station will be permanently

occupied by a crew of six, which will, at least initially, rely on permanently docked Soyuz spacecrafts to serve as

escape "lifeboats" in case of an emergency. The Soyuz utilizes a "ballistic" reentry which allows for little cross-

range capability and maneuverability. In the event of a medical emergency, the Soyuz may be forced to loiter in

space while seeking a ballistic entry corridor that will allow touchdown in the vicinity of appropriate medical

facilities. A crew return vehicle based on lifting body technology could take advantage of the inherent cross-range

capability to minimize on-orbit loiter time. A candidate Assured Crew Return Vehicle (ACRV) has been designed

based on a derivative of the circa 1960 X-23/X-24A lifting body configurations. (See Ref. 1 and 2 for detailed

descriptions and flight tests results from the X-23, also known as SV-5D PRIME, and X-24A programs,

respectively.) A sketch comparing the differences between these two configurations is shown in Fig. 1. A full-

scale, unpiloted flight test vehicle prototype, designated the X-38 (and has been also referred to as XCRV and X-35),

is currently being designed for a space flight test in early 1999. References 3 and 4 provide additional detail about

the X-38 program and results.

This report presents the preliminary results of wind tunnel tests T6735 and T6739, conducted in the NASA

Langley Research Center (LaRC) 20-Inch Mach 6 Tunnel during December, 1996, and January, 1997, in support of

the X-38 program. The purpose of these tests was to investigate the aeroheating characteristics of a proposed X-38

configuration (designated as Revision 3.1) and to examine the effect of discrete roughness elements on the windward

surface boundary layer. Preliminary trajectory information (provided by Chuck Campbell of JSC) is presented in

Fig. 2 and shows that the flight vehicle would experience a length Reynolds number (R%), based on a body length

of 23-ft, of roughly 4 million at a freestream Mach number of 6. These conditions can be simulated in the LaRC

20-Inch Mach 6 Tunnel which has a ReL range of 0.4 to 6.7 million for a model length of 10-in (thus the model is a

0.0362-scale of the 23-ft long flight vehicle). Test techniques that were utilized during these tests include

thermographic phosphors which provides global surface heating images, oil-flow which provides surface streamline

information, and schlieren which provide shock system details. Parametrics included in these tests were the effect of

angle of attack (_ of 20 °, 30 °, and 40°), Reynolds number (Re/ft between 1 and 6 million), body flap deflections (Sbf

of 0°, 20 °, 25 °, and 30°), and discrete roughness elements (which included height, location, orientation, and multiple-

trip effects). The discrete roughness parametrics were included in these tests to provide information to develop a

roughness transition correlation for the X-38 vehicle which would be similar to that which was established for the

Shuttle Orbiter (Ref. 5) and would be used to provide surface roughness tolerances for the flight vehicle.

Nomenclature

M Mach number

Re unit Reynolds number (1/ft.)
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Reynolds number based on body length

model angle of attack (deg)

body flap deflection (deg)

pressure (psi)

temperature (°R)

longitudinal distance from the nose (in)

axial distance from the centerline (in)

height above the waterline (in)

reference length of model (10.25 in)

reference beam of the model (5.01 in)

heat transfer coefficient (lbm/ft2-sec), =q/(Haw- Hw) where Haw= Ha

reference coefficient using Fay-Ridell calculation to stagnation point of a sphere

heat transfer rate (BTU/ft2-sec)

enthalpy (BTU/lbm)

roughness element height (in)

roughness element diagonal width (in)

roughness element orintation (deg)

Subscripts

tl

t2

aw

w

freestream static conditions

reservoir conditions

stagnation conditions behind normal shock

adiabatic wall

model surface

Test Facility

The present experiment was conducted in the LaRC 20-Inch Mach 6 Tunnel (a schematic is provided in Fig. 3).

A detailed description of this hypersonic blowdown facility which uses heated, dried, and filtered air as the test gas, is

provided by Miller (Ref. 6). Typical operating conditions for the tunnel are stagnation pressures ranging from 30 to

500 psia, stagnation temperatures from 760 ° to 1000°R, and freestream unit Reynolds numbers from 0.5 to 8

million per foot. A two-dimensional, contoured nozzle is used to provide nominal freestream Mach numbers from
5.8 to 6.1. The test section is 20.5 by 20 inches; the nozzle throat is 0.399 by 20.5 inch. A bottom-mounted

model injection system can insert models from a sheltered position to the tunnel centerline in less than 0.5-sec. Run

times up to 15 minutes are possible with this facility, although for the current heat transfer and flow visualization

tests, the model was exposed to the flow for only a few seconds. Flow conditions were determined from the

measured reservoir pressure and temperature and the measured pitot pressure at the test section and were compared to a

recent unpublished calibration of the facility.

Test Techniques

Surface Heating

The rapid advances in image processing technology which have occurred in recent years have made digital optical

measurement techniques practical in the wind tunnel. One such optical acquisition method is two-color relative-

intensity phosphor thermography, see Refs. 7, 8, and 9, (a diagram is shown in Fig. 4), which is currently being

applied to aeroheating tests in the hypersonic wind tunnels of NASA Langley Research Center (for example, see Ref.



5, 10,or 11). Withthistechnique,ceramicwindtunnelmodelsarefabricatedandcoatedwithphosphorswhich
fluoresceintworegionsofthevisiblespectrumwhenilluminatedwithultravioletlight. Thefluorescenceintensity
isdependentupontheamountof incidentultravioletlightandthelocalsurfacetemperatureofthephosphors.By
acquiringfluorescenceintensityimageswithacolorvideocameraofanilluminatedphosphormodelexposedto flow
inawindtunnel,surfacetemperaturemappingscanbecalculatedontheportionsofthemodelwhicharein thefield
ofviewofthecamera.A temperaturecalibrationof thesystemconductedpriorto thestudyprovidesthelook-up
tableswhichareusedto converttheratioof thegreenandredintensityimagesto globaltemperaturemappings.
Withtemperatureimagesacquiredatdifferenttimesin awindtunnelrun,globalheattransferimagesarecomputed
assumingone-dimensionalheatconduction.Theprimaryadvantageofthistechniqueis theglobalresolutionofthe
quantitativeheattransferdata.Suchdatacanbeusedtoidentifytheheatingfootprintof complex,three-dimensional
flowphenomena(e.g.,transitionfronts,turbulentwedges,boundarylayervortices,etc.)thatareextremelydifficult
toresolvebydiscretemeasurementtechniques.Phosphorthermographyis routinelyusedinLangley'shypersonic
facilitiesasquantitativeglobalinformationis providedby modelsthatcanbefabricatedmuchquickerandmore
economicallythanother"moreconventional"techniques.Recentcomparisonsof heattransfermeasurements
obtainedfromphosphorthermographytoconventionalthin-filmresistancegaugesmeasurements(Ref.12)andCFD
predictions(Ref.13)haveshownexcellentagreement.

Flow Visualization

Flow visualization techniques, in the form of schlieren and oil-flow, were used to complement the surface

heating tests. The LaRC 20-Inch Mach 6 Tunnel is equipped with a pulsed white-light, Z-pattern, single-pass

schlieren system with a field of view encompassing the entire 20-in test core. Images were recorded on 70-mm film

and digitally scanned for incorporation in this report. Surface streamline patterns were obtained using the oil-flow

technique. Backup ceramic models were spray-painted black to enhance contrast with the white pigmented oils used
to trace streamline movement. A thin basecoat of clear silicon oil was first applied to the surface, then a mist of

medium-sized pigmented-oil drops was sprayed onto the surface. After the model surface was prepared, the model was

injected into the airstream and the development of the surface streamlines were recorded with a conventional video

camera. The model was retracted immediately following flow establishment and formation of streamline patterns,

and post-run digital photographs were recorded with a Kodak high-resolution camera.

Model Description

The X-38 model dimensions are shown in Fig. 5. A rapid prototyping technique was used to build a resin

stereolithography (SLA) model with various, detachable lower-surface body flaps. The lower surface body flaps have

separate left and right sections (with a flow-through gap in between) that, for the flight vehicle, are intended to be

symmetrically deflected for pitch control or differentially deflected for lateral aerodynamic control. To simplify

model construction, the body flaps were modeled as wedges, as oppossed to deflected flaps of finite wall thickness.

The SLA model was then used with the various wedge body flaps as a pattern to cast several ceramic model

configurations. Figure 6 is a photograph of the 6 model configurations that were cast with the various body flap

deflections. The model designation numbers for these 6 models, including both primary "A" models used for heating

and back-up "B" models used for flow visualization, are listed in Table 1 along with the windward surface contour

measurement accuracies. Two casts of each configuration were made, with the primary ceramic shell being

immediately prepared for testing (backfilled and phosphor coated) and the back-up shell held in reserve, in case of

problems with the primary. Once the phosphor testing was completed, the backup models were spray-coated with a

thin black glazing (to seal the surface), final fired in the kiln, and then back-filled for use as the oil-flow and
schlieren models. The surface contour accuracies listed in Table 1 were determined from Quality Assurance

measurements using a Brown and Sharpe Series 7300 Coordinate Measurement Machine (with quoted linear

accuracies on the order of 0.0003 in. or better) and correspond to the difference between the actual surface
measurement for each model and the original CAD geometry for the windward surface centerline. The values shown

in the four "Surface Accuracy Measurements" columns of the table correspond to weighted-averaged surface accuracies

over the first four 20% segments of the models' windward surfaces (the surface accuracy of the final 20% segment,

which covers the body flap region, is incorporated in the body flap deflection accuracies). The body flap deflections

were generally found to be accurate to within _+1 deg.

In order to obtain accurate heat transfer data using the one-dimensional heat conduction equation, models need to

' _ : _ i :_ : _ i ...... : ' i ....... : i_ ! ..... ': i _ : .... : ....



be made of a material with low thermal diffusivity and well defined, uniform, isotropic thermal properties. Also, the

models must be durable for repeated use in the wind tunnel and not deform when thermally cycled. To meet these

requirements, a unique, silica ceramic investment slip casting method has been developed and patented (Ref. 14). A

hydraulically setting magnesia ceramic was used to backfill the ceramic shell, thus providing strength and support to

the sting structure. The models were then coated with a mixture of phosphors suspended in a silica-based colloidal

binder. This coating consisted of a 5:1 mixture of lanthanum oxysulfide (La202S)doped with trivalent europium

and zinc cadmium sulfide (ZnCdS) doped with silver and nickel in a propriet_ ratio. The coatings typically do not

require refurbishment between runs in the wind tunnel and have been measured to be approximately 0.001 inches

thick. Figure 7 shows photographs of one of the models installed in the 20-inch Mach 6 Tunnel. The final step in

the fabrication process is to apply fiducial marks along the body to assist in determining spatial locations accurately.

The fiducial marks used for the present study are shown in a sketch in Fig. 8 and the non-dimensional locations are

listed in Table 2. The fiducial marks along the centerline designated with the letters "A" through "E" correspond to

the roughness element locations.

The roughness elements used in this study were similar to the method used in Ref. 5 which were fabricated to
simulate a raised Thermal Protection System (TPS) tile and were cut from 0.0025-inch thick Kapton tape.

Variations on the roughness heights (k) were obtained by stacking multiple layers of Kapton tape (k = 0.0025,

0.0050, and 0.0075-inch). Roughness elements fabricated from Kapton tape were easily applied to the various

locations of interest on the model without adversely affecting the phosphor coating. Kapton tape was chosen

through a trial and error process based on the ease of fabrication and application of the roughness elements, as well as
the durability of the material (and adhesive) to heat and shear stress loading. The simulated tile roughness elements

were placed directly over the various fiducial marks which were previously located on the model. Presented in Fig. 9
is a sketch of a typical trip showing dimensions and orientation. A variation in roughness element width was

investigated, ranging from the small sizes used in Ref. 5 to the approximate-size scaled TPS tile for the X-38 flight

vehicle (0.050, 0.100, 0.200, and 0.400-inch square). Also, the orientation of the roughness elements was

investigated, in 15 ° increments ranging from 0° to 45 °. A few multiple trip configurations were also tested and these

are shown in Fig. 10. The numbers assigned to the multiple trips shown in Fig. 10 correspond to the numbers

listed in Table 4 under the "Multiple Trip Configuration" column.

Test Conditions

The LaRC 20-Inch Mach 6 Tunnel provides a freestream unit Reynolds number variation of 0.5 to 8.0 million

per foot. For a 0.0362-scale model, this corresponds to a length Reynolds number of approximately 0.41 to 6.7

million. For the baseline data, the model angle of attack (o_) was varied from 20 ° to 40 ° in 10° increments and the

sideslip was maintained at zero for all the runs presented herein. Flow conditions, including run-to-run repeatability,

are presented in Table 3. For each model configuration, the unit Reynolds number was varied between 1 and 4

million to obtain the smooth baseline data for comparison to the tripped data. The investigation of the effect of trips

was conducted at _ = 40 ° only. For the transition testing, the tunnel stagnation pressure and temperature were varied

over a series of runs with the roughness element firmly applied to the location of interest. This was done to

determine the maximum Reynolds number which still maintained laminar flow (the "incipient" value, if Bertin's 15

vernacular is adopted), the Reynolds number where significant non-laminar flow first appears downstream of the

roughness element ("critical"), and finally the minimum Reynolds number where the transition front is fixed at the

roughness element (Bertin's "effective" value).

Data Reduction

Heating rates were calculated from the global surface temperature measurements using one-dimensional semi-

infinite solid heat-conduction equations, as discussed in detail in Refs. 8 and 9. Based on considerations presented in

Ref. 9, phosphor system measurement error is believed to be better than __+8%, with overall experimental uncertainty

of _ 15%. Heating distributions are presented in terms of the ratio of heat-transfer coefficients h/hF_R, where hr_R

corresponds to the stagnation-point heating to a sphere with radius 0.4344-in (a 1-ft radius sphere scaled to the model

size) and was calculated based on the theory of Fay and Ridel116. Repeatability for the normalized centerline heat

transfer measurements was found to be generally better than +4%.



Results

Surface Heating

The phosphor thermography data was acquired in December, 1996, during Test 6735. The run log, which lists

the parametrics that were investigated during 180 runs, is presented in Table 4 and the resulting global heating

images are shown in chronological order by run number in Appendix A. All the images were acquired with the

camera perpendicular to the model. General observations which can be made based on the baseline images are:

(1) As t_ increases from 20 ° to 40 °, heating to the windward surface increases. (For example, see Run # 164
for t_ = 20°, Run # 146 for t_ = 30 °, and Run # 12 for t_ = 40°.)

(2) As Re increases, the heating ratio h/hF_ R remains relatively constant over the windward surface for laminar

conditions. (For example, see Runs # 9 through 12)

(3) As the body flap deflection increases, the induced flap separation/reattachment produced significant heating

levels on the body flap which were strongly affected by both o: and Re; the highest flap heating case (Run #
19) was for t_ = 40 °, Re_/ft = 4.4 million, and _bf = 30 ° and had local regions of heating that exceeded the

reference value (corresponding to a strong shock impingement).

(4) Separation in front of the deflected body flap was generally fixed at the start of the:_vindward surface

expansion region at x/L = 0.7. (See, for example, Run # 174 for _ = 20 °, Run # 153 for t_ - 30 °, and

Run # 19 for t_ = 40°.)

(5) Differentially deflected flaps did not promote any significant crosstalk heating. (For example, compare

Runs 24 and 27.)

General observations which can be made based on the boundary-layer transition images (Runs 32 through 130)
obtained at _ = 40 ° are:

(1) The roughness elements and locations that were used were successful in promoting transition for a wide

range of Reynolds numbers.

(2) The turbulent wedge, resulting from a roughness element placed on the windward centerline, was a useful

way of determining if the model was installed with a small amount of yaw or roll, as an asymmetric

turbulent wedge implies a model attitude mis-alignment. (For example, compare Runs 33 and 34; Run 33

had a subtle amount of roll of the "dog-leg" strut used to hold the model at the proper tx which promoted a

less than 0.5 ° of yaw to the model.)

(3) Turbulence on the forebody reduced both the size of the separation region and the reattachment heating on

the flap, in the localized region that is affected by the trip. (For example, compare Runs 23 and 124.)

(4) As the trips moved closer to the nose, the turbulent wedge behind the trip became harder to keep symmetric,

most likely due to slight misalignments associated with the trip coupled with the lateral pressure gradient

near the nose. (For example, see Runs 69 through 87.)

(5) The forward most trip station (Station A, x/L = 0.02) was the hardest location to trip. (For example,

compare A-trips, Runs 83 through 87, to B-trips, Runs 67 through 82.)

(6) Trip effectiveness did not appear to change drastically as the width of the trip element was increased.

(Compare Runs # 107, 113, 117, and 120.)

(7) The orientation of the trip was important, with a 45 ° trip being the most effective and the 0° trip being the

least effective. (Compare Runs # 119, 126, 128, and 129.)

(8) Multiple roughness elements did not appear to promote transition any more effectively than a single trip

element. (Compare Runs # 119, and 130 through 136.)



Flow Visualization

The flow visualization tests (both shock shapes and surface streamlines were acquired simultaneously) were

performed in January, 1997, during Test 6739. The run log, which shows the 12 run matrix, is presented in Table

5. The schlieren images and oil-flow movement images are shown in chronological order in Appendices B and C,

respectively. General observations on flow phenomenon which can be made based on the schlieren and oil-flow

movement images are:

Windward Inflow/OuOqow

1) As IX increases from 30 ° to 40 °, outflow (spreading of the surface streamlines) increases (see Runs 6 and 7

of Appendix C). For IX = 20 ° (Run # 8), inflow of the windward surface streamlines was indicated.

(2) Changes in Re had little effect on inflow/outflow of surface streamlines (Runs 3, 1, and 2).

Windward Separation/Reattachment

(1) With the body flap deflected, the surface streamlines indicate the onset of separation at the expansion region.

Both the separation and reattachment compression shocks are evident in the corresponding schlieren image

(for example, see Run # 5).

(2) As IX increases from 20 ° to 40 °, the separation region appears to decrease slightly (for example, see Runs #

9, 5, and_i of Appendix C).

(3) Likewise, as Re/ft increases from 1.1 million to 4.4 million, the separation region decreases slightly (see

Runs # 3, 1, and 2 of Appendix C).

(4) For the body flap deflections tested, turbulence on the forebody (as indicated by the corresponding heating

cases) did not appear to eliminate the separation region (see Runs # 2 and 11 of Appendix C and Run # 124

of Appendix A).

(5) On Run #11, a trip on the windward surface partially peeled off during the run. The schlieren image

captured the disturbance wave that was created by this now large protuberance, which then reflected off the

bow shock into the body flap area. The deflected disturbance was not picked up in the oil-flow.

Canopy Separation/R eattachment

(1) An imbedded shock or compression wave appears to emminate from the canopy region in the schlieren

images for IX = 20 ° and 30 ° (for example, see Runs # 8 and 6).

(2) As IX increases, the separation/vortex region around the base of the canopy appears to become less distinct

(for example, see Runs # 9, 5, and 4 of Appendix C).

Leeside Vortex

(1) A leeside vortex reattachment line is formed along the centerline between the canopy and the leeside flap,

which, again, appears to become less distinct with increasing IX (for example, see Runs # 9, 5, and 4 of

Appendix C).

(2) The surface streamlines indicate that the leeside vortices impinge on the upper surface body flap: at IX = 20°

(Run 9), a stagnation point appears on the center of the leeside fin; while at IX - 40° (Run 4), two

reattachment lines appear on either side of the center stagnation point.

(3) The Reynolds number effect on the leeside vortices could not be determined from these images.

Fin Upwash

(1) Highly three-dimensional flow was evident on the outboard surface streamlines of the wing/fin which was

stongly dependent on IX (for example, see Runs # 8, 6, and 7 of Appendix C).

(2) At IX = 20 ° (Run # 8), the surface streamlines along the fin leading edge appear to be moving from the

leading edge towards the trailing edge, while at IX = 40 ° (Run # 7), the fin upwash dominates such that the

surface streamlines are curving up towards the leading edge.



(3) The surface streamlines are diverted around the leading-edge wing/body fillet for the range of 0_ tested, which

suggests that this juncture is a region of high pressure. For the t_ = 20 ° case only, this region appears to

be the source of the embedded shock that is evident on the leeside of the schlieren image of Run # 8.

(4) At t_ = 20 ° (Run # 8), a low shear region appears in the middle of the outboard section of the fin.

(5) At higher o_'s, the flow over the fixed, deflected rudders appear to eminate from the windward surface (see,

for example, Runs # 6 and 7 of Appendix C).

Conclusions

An experimental investigation of the aeroheating characteristics for a proposed X-38 configuration (Revision
3.1) has been conducted in the LaRC 20-Inch Mach 6 Tunnel. Phosphor thermography was used to provide global

heating images of the windward surface for a variety of angles-of-attack, Reynolds numbers, and body flap

deflections. Additionally, the effect of discrete roughness elements was investigated for t_ = 40 °, which included trip

location, height, width, and orientation parametrics. The aeroheating results were complemented with schlieren and

oil-flow images which provided shock-shape and surface streamline information. As this report was intended to be a

"quick-release" of the experimental data for review by the X-38 program, analysis was limited to observations of

experimental results.
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Table 1: Model configurations and windward surface accuracies.

Model

Designation

A-3

A-5

A-6

B-1

Body Flap Deflections (Deg)

0 0

20 20

25 25

30 30

20 25

0 25

0 0

O.O<x/L<0.2

+0.011

+0.019

+0.023

Surface Accuracy Measurements (in.)
0.2<x/L<0.4 0.4<x/L<0.6

+0.010

+0.015

+0.013

+0.012

+0.028

_+0.027

_+0.014

_+0.011

+0.018 ,t-0.015 -+0.015

_+0.018 -+0.010 -+0.012

0.6<x/L<0.8

+0.019

-+0.019

+0.015

-+0.026

_+0.012

_+0.012

_+0.027

B-2 20 20

B-3 25 25

B-4

B-5

30

20

30

25

25

body flaps accurate to _+1deg

+0.018

•+0.018

-+0.015

_+0.019

_+0.017

•+0.010

•+0.011

-+0.011

_0.010

±0.011

+0.015 +0.019 [+0.015 . +0.030

•+0.015 +0.017 !

•+0.015 +0.026• I
_+0.015 • +0.029

accuracies listed above are weighted-averaged for each section

See Fi[_. 8
Windward

trips

Windward

Leeward

Port

Table 2: Trip locations and fiducial marks.

Fiducial x/L _¢/b z/L

A/1 0.02 0 -

B 0.1 0 -

C 0.2 0 - ....

D 0.3 0 -

E 0.5 0 -

2 0.25 0 -

3 0.55 0.25 -

4 0.55 -0.25 -

5 0.68 0 -

6 0.02 0 -

7 0.25 0 -

8 0.55 0.25 -

9 0.55 -0.25 -

10 0.68 0 -

11 0.02 - 0

12 0.25 - 0

13 0.68 - 0

14 0.92 - 0.17



Table 3: Nominal flow conditions and run-to-run repeatability for 20-Inch Mach 6 Tunnel.

Re= (x106/ft)

1.16+2.5%

1.60+1.7%

1.87+1.6%

2.24+1.5%

2.51 +2.3 %

2.76+5.5%

3.20+_1.o%
3.73+1.9%

4.42+2. 1%

5.52
!

6.71

M_ Ptl (psi) Ttl (°R) Ht,(BTU/Ibm)

5.88+0.03% 60.3+2.3% 880.0_+_0.4% 211.7±0.4%

5.90_+0.02% 85.4+ 1.5 % 885.7_+0.5 % 213.1_+0.6%

5.92-+0.03 % 101.7+2.1% 894.8+0.3 % 215.3±0.3%

5.94+0.02 % 125.2_+ 1.2 % 906.3_+0.5% 218.1 +0.5 %

5.95_+0.03% 140.7+2.0% 905.8+0.8% 218.0±0.8%

51.95+0.06%

5.96+0.01%

5.97+0.01%

5.98+0.02%

6.00

6.01

155.5+4.4%

18 I. 1+1.0%

211.9+1,1%

252.2+1.21%

3129.7

402.2

906.3_+0.7%

906.2±0.3 %

906.7_+0.8 %

907.2+0.8%

929.4

928.6

Pt2 (psi)

1.95_+1.5%

2.71_+1.1%

3.19+_1.9%
....

218.1 ±0.6% 4.761

218.1±0.3% .... 5,50_+0,9%

218.2±0.8 % 6.40+ 1.1%

218.4±0.9% ..... 7.57-+1.4%

223.9 ............... 9.81

223.6 11.86

!I'
I
I
I
!
!

!
[

[
|

Table 4: Run log for Test 6735 conducted in LaRC 20-Inch Mach 6 Tunnel.

Run Date Time Model AOA Re P0 To

(1996) deg xl06/ft psi 'R

1 11/6 A-6 40 1 60.0 885

2 11/6 A-6 40 1 60.0 885

3 11/6 A-6 40 1 60.0 885

4 11/6 A-6 40 1 60.0 885

5 11/7 A-6 40 1 60.0 885

6 11/7 A-6 40

7 11/7 A-6 40 2 125.0 910

BASELINE DATA FOR ALL 6 MODELS AT AOA = 40 °

8 11/7 A-6 40 1 60.0 885

9 11/7 21:30 .... A-1 40 1.1.4 59.4 880.0

10 11/7 22:10 A-1 40 2.23 125.0 906.9

11 11/7 22:40 A-1 40 4 250.0 910
1

12 11/7 23:00 A-1 40 4.38 250.3 907.9

13 11/7 23:10 A-1 40 6.71 402.2 928.5

14 11/8 18:10 A-2 40 1.12 58.7 880.9

15 11/8 18:45 A-2 40 2'22 124.5 906.5

16 11/8 20:10 A-2 40 4.39 250.6 906.5

17 11/8 21:15 A-4 40 1.14 59.6 882.0

18 11/8 21:50 A-4 40 2.21 123.9 906.7

19 11/8 22:30 A-4 40 4.42 250.9 903.9

20 11/12 13:15 A-3 40 - - -

21 11/12 13:55 A-3 40 1.14 59.4 880.3

22 11/12 14:40 A-3 40 2.24 124.7 904.0

23 11/12 15:30 A-3 40 4.41 251.9 907.6

24 11/12 16:25 A-5 40 1.17 61.0 881.1

25 11/12 17:05 A-5 40 2.27 126.3 903.1

Location k, in

Trip 0

W, in O,de_ Multiple

: i

Notes O

ESP run only

ESP run only

ESP run only

ESP run only

ESP run only

model injec run only

ESP run only'

lost FC, use calibrations

tunnel didnt reach FC

10
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Table 4: (Continued)

Run Date

(1996)

169 12/3

170 12/3

171 12/3

172 12/3

[ 173 12/3

174 12/3

Time Model AOA Re

13:45 A-3 20

14:29 A-3 20

15:01 A-3 20

15:31 A-4 20

16:02 A-4 20

16:32 A-4 20

Po %

x 10 6/ft psi CR

1.15 60.1 879.7

2.22 123.7 903.1

4.39 250.3 905.7

1.15 60.2 879.7

2.23 124.6 906'2

4.40 253.2 910.7

Trip O

Location k, in W, in O,de[_ Multiple

Notes

ORefer to Fi 8 Table 2 for x/L value of locations" Refer to Fig. 10 for sketch of multiple trip configurations; k is the

W is the width, and O is the trip orientation

OFC refers to tunnel flow conditions, TP refers to thermo

Table 5" Run log of Test 6739 conducted in the LaRC 20-Inch Mach 6 Tunnel.

Run Date Model i AOA Re P0 To(1997) deg nl06/ft psi _R

1 1/23 B-3 i 40 '2.2 125 910

2 1/23 B-3 ! 43 4.4 250 910

3 1/23 B-3 43 1.1 60 885

4 1/23 B-3 43 2.2 125 910

5 1/23 B-3 30 2.2 125 910

6 1/24 B-1 30 2.2 125 910

7 1/24 B-1 43 2.2 125 910

8 1/24 B-1 2) 2.2 125 910

9 1/24 B-3 20 2.2 125 9t0

10 t/24 B-3 43 2.2 125 910

[ 11 1/24 B-3 43 4.4 250 910

12 1/24 B-3 43 2.2 125 910

Trip O _ Notes@

Locatior k, in W, in O,de_ Multipli

D 0.005 0.4 45

D 0.005 0.4 45

C 0.005 0.05 45

leeside only

Trip peeled up during run

I
I!,
!
!

!
iI

14
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Figure 1. Comparison of X-23 and X-24A flight vehicles.
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Figure 2. Preliminary X-38 trajectory
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Schlieren
_-Settling 20 x 20 inch /_ windows
\chamber test section -_ / /

..........

...... !7 _ T-i : !!w _ •

.....;i!i;; ....... : i _ :........... TO

Vacuum

B ....._ _ ± Variable sphere

Model _ second

injection system _i ii!i_ minimum
........|ii  Arc

sector

Nominal Mach number:

Reynolds number (x 106/ft) •
Dynamic pressure (psf)"

6.0 Total pressure (psia)- 30 to 475
0.5 to 8 Total temperature (°R): 810 to 1018
69 to 1264 Run time (minutes)" 1 to 15

Figure 3. Schematic of NASA Langley 20-Inch Mach 6 Tunnel.

Wind Tunnel

External

Trigger
Circuit

Ji_i:_iiZ_ii_iii_iiiiiiiiii!iiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiii

Unix Workstation
Data Reduction

Ethernet
Link ....

Image Hardcopy

Figure 4. Schematic of phosphor thermography system.
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FS0_00-t _ / ........
-__0,81 8.688 -__ / 10.0 ° PIVOTAXIS

1 o 3 42

9.114 -_
10.431

_. 10.839

-CLO_O0-I

-CL0 00-

.//_,_ " \ 6.6 °

/. " _ \.\

-- 2.439 /: ..... \, \
'\

6 !14o, . ! io-WL0_00- 431 R

_/ -FS0_00- 3.184

0.0362 Scale2 X-38 Rev. 3.1

Ceramic Heating Model

25 ° Body Flap Shown

Figure 5. X-38 model dimension.

Figure 6. Photograph of the 6 model configurations.
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Figure 7. Photographs of a model installed in the 20-Inch Mach 6 Tunnel.
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Notes:(1) See Table 2 for fiducial mark locations
(2) Waterline is defined as being through the nose and parallel to Windward surface flat
(3) Numbered fiducials were applied with a coordinate measurement machine

prior to testing using the reference dimensions L=10.25 in and b=5.01 in
(4) Lettered fiducials correspond to trip locations, most were added during the

tunnel entry and measured post-test

PORTSIDE VIEW

W.L.

LEESIDE VIEW _ +8

C.L. T_6___

)

WINDSIDE VIEW

CL 2 -'- __ .,.2.,. _,. ..,_5 L J

• - /- q

Figure 8. Sketch of trip locations and fiducial marks.
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Width

Centerline of
Model

Fiducial Mark
Location

Orientation

-deg

i '\\
,\ 30-deg

' "\ 45-deg

Figure 9. Sketch of trips showing size and orientation.

Multiple Tnp Configurations for D_amo d O e tat o Cases
T6735 Runs 130-136

T6735 Runs 137-140

Figure 10. Sketch of multiple trip configurations.
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Run # 8

Windward View

Model # 6

LBF @ 25 °

= 40 °

ReJft - 1.1 x 10 6

Baseline, no trip

Run # 9

Windward View

Model # 1

BF@0 o

c_ = 40 °

ReJft - 1.1 x 106

Baseline, no trip

Run # 10

Windward View

Model # 1

BF @ 0 o

o_ = 40 °

ReJft - 2.2x 10 6

Baseline, no trip

i !!iiiii............... i h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 12

Windward View

Model # 1

BF@0 o

Ix = 40 °

Re=/ft - 4.4x 10 6

Baseline, no trip

Run # 13

Windward View

Model # 1

BF @ 0 o

o: = 40 °

Re=/ft - 6.7x 106

Baseline, no trip

Run # 14

Windward View

Model # 2

B F @ 20 °

cz = 40 °

ReJft - 1.1 x 10 6

Baseline, no trip

_)!_!_!_!_!!_!_"_____i__....................................................................._i_iiiii_'i_'i_i_i_'_i_i:_':i_',_,',_,_'<_.................... ,,i:!!!_,_,'_::i::::::::':::'::::'i'iiiiii':_;':;........................................................................................] h/h r_

0.0 0.2 0.4 0.6 0.8 1.0

22



Run # 15

Windward View

Model # 2

BF @ 20 o

cz = 40 °

Re=/ft - 2.2x 10 6

Baseline, no trip

Run# 16

Windward View

Model # 2

B F @ 20 o

o_ = 40 °

Re=/fl - 4.4x 10 6

Baseline, no trip

ii!¸_i

i-

Run# 17

Windward View

Model # 4

BF @ 30 o

o_ = 40 °

ReJft - 1.1 x 106

Baseline, no trip

_!iiiiiii_ ......................................................................................iiiiii_i_i_;_i_i_Tiiii?"iiiiiiiii:,i_,i:,i_,iii7._.........................................................................i h/h_f

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 18

Windward View

Model # 4

BF @ 30 °

¢z = 40 °

Re=/ft - 2.2x 106

Baseline, no trip

Run# 19

Windward View

Model # 4

BF @ 30 °

o¢ = 40 °

Re=/ft - 4.4x 106

Baseline, no trip

Run # 21

Windward View

Model # 3

BF @ 25 °

¢z = 40 °

ReSft - 1.1 x 10 6

Baseline, no trip

.....! h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 22

Windward View

Model # 3

BF @ 25 °

{x = 40 °

ReJft - 2.2x 106

Baseline, no trip

Run # 23

Windward View

Model # 3

BF @ 25 °

(x = 40 °

ReJft - 4.4x 10 6

Baseline, no trip

Run # 24

Windward View

Model # 5

RBF @ 20 °

LBF @ 25 °

c_ = 40 °

RQo/ft - 1.1 x 106

Baseline, no trip

ii ........! ! h/h ref
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 25

Windward View

Model # 5

RBF @ 20 °

LBF @ 25 °

o: = 40 °

Re=/ft - 2.2x 106

Baseline, no trip

Run # 26

Windward View

Model # 5

RBF @ 20 °

LBF @ 25 °

(z= 40 °

Re=/ft - 4.4x 106

Baseline, no trip

Run # 27

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

¢z = 40 °

ReJft - 1.1 x 106

Baseline, no trip

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 28

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

cz = 40 °

Re=/ft - 2.2x 106

Baseline, no trip

Run # 29

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

0¢ = 40 °

ReJft - 4.4x 106

Baseline, no trip

Run # 31

Windward View

Model # 2

B F @ 20 °

= 40 °

Re=/ft - 4.4x 10 6

Baseline, no trip

Repeat of Run 16

........................ rJ:iiiiiiiiiii_i;_;;;;;:;:;:::_..............................................................."%iiii_iiii',i',i',iiiiiiiiiiiiiiii'::iiiii:_:_:,i:,i:,i:,:_'_iiiiiiiiii....................................................................................................

I h/h ref,liiii;_

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 32

Windward View

Model # 2

B F @ 20 °

0_ = 40 °

ReJft - 4.4x 10 6

0.0025-in. Trip
@ x/L = 0.5

Run # 33

Windward View

Model # 2

B F @ 20 °

0_ = 40 °

Re.o/ft - 4.4x 106

0.0050-in. Trip
@ x/L = 0.5

Run # 34

Windward View

Model # 2

B F @ 20 °

0_ = 40 °

ReJft - 4.4x 10 6

0.0050-in. Trip
@ x/L = 0.5

Fixed yaw

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 35

Windward View

Model # 2

B F @ 20 °

= 40 °

ReJft - 4.4x 10 6

Baseline repeat

Run # 36

Windward View

Model # 2

BF @ 20 °

o: = 40 °

Re=/ft - 4.4x 10 6

0.0050-in. Trip
@ x/L = 0.5

Repeat Run 34

Run # 37

Windward View

Model # 2

B F @ 20 °

o: = 40 °

ReJft - 3.3x 106

0.0050-in. Trip
@ x/L = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 38

Windward View

Model # 2

B F @ 20 °

o: = 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip

@ x/L = 0.5

iiUiiii

Run # 39

Windward View

Model # 2

B F @ 20 °

o:= 40 °

ReJft - 2.7x 106

0.0050-in. Trip

@ x/L = 0.5

Run # 40

Windward View

Model # 2

B F @ 20 °

o: = 40 °

ReJft - 3.3x 106

0.0075-in. Trip

@ x/L = 0.5

h/href

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 41

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

ReJft - 2.2x 106

0.0075-in. Trip
@ x/L = 0.5

Run # 42

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 1.1 x 10 6

0.0075-in. Trip
@ x/L = 0.5

Run # 43

Windward View

Model # 2

B F @ 20 °

cz = 40 °

ReJfl - 1.6x 10 6

0.0075-in. Trip
@ x/L = 0.5

i! iiiiiiiiiii I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 44

Windward View

Model # 2

B F @ 20 °

c_ = 40 °

Re=/ft - 4.4x 106

0.0025-in. Trip

@ x/L = 0.3

Run # 45

Windward View

Model # 2

B F @ 20 °

c_ = 40 °

ReJft - 4.4x 106

0.0050-in. Trip

@ x/L = 0.3

Run # 46

Windward View

Model # 2

B F @ 20 °

c_ = 40 °

Re=/ft - 3.3x 10 6

0.0050-in. Trip

@ x/L = 0.3

 ii) ))  i iiiii!iih/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 47

Windward View

Model # 2

B F @ 20 °

o: = 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Run # 48

Windward View

Model # 2

B F @ 20 °

o: = 40 °

ReJft - 2.8x 106

0.0050-in. Trip
@ x/L = 0.3

Run # 49

Windward View

Model # 2

B F @ 20 °

cz = 40 °

Re=/ft - 2.4x 10 6

0.0050-in. Trip
@ x/L = 0.3

ii!i iii h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 50

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 3.3x 106

0.0075-in. Trip
@ x/L = 0.3

Run # 51

Windward View

Model # 2

B F @ 20 °

(z = 40 °

Re=/ft - 2.2x 106

0.0075-in. Trip
@ x/L = 0.3

Run # 53

Windward View

Model # 2

B F @ 20 °

o: = 40 °

Re=/ft - 1.1 x 10 6

0.0075-in. Trip
@ x/L = 0.3

ii"!ii!!ii h/h ref
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 54

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 1.6x 10 6

0.0075-in. Trip
@ x/L = 0.3

Run # 55

Windward View

Model # 2

B F @ 20 °

= 40 °

Re=/ft - 4.4x 10 6

0.0025-in. Trip
@ x/L = 0.2

Run # 56

Windward View

Model # 2

BF @ 20 °

o: = 40 °

Re=/ft - 3.3x 106

0.0025-in. Trip
@ x/L = 0.2

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 57

Windward View

Model # 2

B F @ 20 °

c_ = 40 °

Re=/ft - 3.8x 10 6

0.0025-in. Trip
@ x/L = 0.2

Run # 58

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 4.4x 10 6

New 0.0025-in. Trip

@ x/L = 0.2

Run # 59

Windward View

Model # 2

B F @ 20 °

= 40 °

Re=/ft - 3.8x 10 6

New 0.0025-in. Trip

@ x/L = 0.2

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 60

Windward View

Model # 2

BF @ 20 °

cz = 40 °

Re=/ft - 3.3x 10 6

0.0050-in. Trip
@ x/L = 0.2

Run # 61

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.2

Run # 62

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 1.6x 10 6

0.0050-in. Trip
@ x/L = 0.2

...............................................................................................:,:v,,_,_iiiiii_iiiii_iii7iiiiiiiiiiii_,iii_,i:,i_,iii-i-iTi._...................................................................
i h/h ref

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 63

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 2.5x 10 6

0.0050-in. Trip
@ x/L = 0.2

Run # 64

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 2.2x l06

0.0075-in. Trip
@ x/L = 0.2

Run # 65

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 1.1 x 10 6

0.0075-in. Trip
@ x/L = 0.2

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 66

Windward View

Model # 2

B F @ 20 °

= 40 °

Re=/ft - 1.6x 10 6

0.0075-in. Trip
@ x/L = 0.2

........ i/ /ii ¸ /

Run # 67

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 4.4x 10 6

0.0025-in. Trip
@ x/L = 0.1

Run # 68

Windward View

Model # 2

B F @ 20 °

= 40 °

ReJft - 5.4x 106

0.0025-in. Trip
@ x/L = 0.1

i!!i!i!iiii!il!!!!! h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 69

Windward View

Model # 2

B F @ 20 °

cz = 40 °

Re=/ft - 3.3x 10 6

0.0050-in. Trip
@ x/L = 0.1

Run # 70

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 4.4x 10 6

0.0050-in. Trip
@ x/L = 0.1

Run # 71

Windward View

Model # 2

B F @ 20 °

cz = 40 °

Re=/ft - 2.2x 10 6

0.0075-in. Trip
@ x/L = 0.1

..............................._,;,._................................................__.......................__=%i_;_iiii_iiii_........ ::-:!i!iiiTiiiililizi':?;';i_...................._............................................................................................

• h/h ref
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 72

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

Re=/ft - 1.6x 10 6

0.0075-in. Trip
@ x/L = 0.1

Run # 73

Windward View

Model # 2

B F @ 20 °

cz = 40 °

ReJft - 3.3x 10 6

0.0075-in. Trip
@ x/L = 0.1

Run # 74

Windward View

Model # 2

B F @ 20 °

cz = 40 °

ReJft - 4.4x 106

0.0025-in. Trip

@ x/L = 0.1

.................... h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 75

Windward View

Model # 2

B F @ 20 °

o: = 40 °

ReJft - 3.3x 10 6

0.0025-in. Trip
@ x/L = 0.1

Run # 78

Windward View

Model # 2

B F @ 20 °

o¢ = 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.1

Run # 80

Windward View

Model # 2

B F @ 20 °

= 40 °

ReJft - 3.3x 10 6

0.0050-in. Trip
@ x/L = 0.1

i I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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O'k 8"0 9"0 17"0 _'0 0"0

EO'O = q/x @

d!a_L "ut.-_O0"O

90 1 "X_7"_ -- ],:[/°°0_[

o017 = _0

o0E @ _Ifl

E # IopoIAI

_O!A pJg_pu!A_

fg # un_I

I'0 = q/x @

d!J_L "u!-ogo0"o

90 1X_'_ -- ]z]/°°O_

o017 = D

o0E @ _q_l

# IopoIA/

_O!A pjgA_pu!A_

Eg # un_I

I'0 = "-l/X @

dt.J_L "u.t-OgO0" 0

90I X_'f - :lJ/°°o_l

o017 = _0

oOE @ _q_l

E # IOpOlAI

_O!A pjgA_pU!A_

I g # un_I



Run # 84
Windward View
Model # 2
BF @ 20°

= 40°
Re=/ft - 4.4x 106

0.0050-in. Trip
@ x/L = 0.02

Run # 86

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 4.4x 106

0.0075-in. Trip
@ x/L = 0.02

Run # 87

Windward View

Model # 2

B F @ 20 °

= 40 °

Re=/ft - 3.3x 10 6

0.0075-in. Trip
@ x/L = 0.02

.........................i;i;........................................................................................................................................................................................................h/h ref

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 88

Windward View

Model # 2

B F @ 20 °

cz = 40 °

Re=/ft - 3.8x 10 6

0.0050-in. Trip
@ x/L = 0.5

Run # 89

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

Re=/ft - 2.4x 10 6

0.0050-in. Trip
@ x/L = 0.5

Run # 90

Windward View

Model # 2

B F @ 20 °

cz = 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.5

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 91

Windward View

Model # 2

B F @ 20 °

(z = 40 °

Reoo/ft - 1.6x 10 6

0.0050-in. Trip
@ x/L = 0.5

Run # 92

Windward View

Model # 2

B F @ 20 °

(z = 40 °

Re=/ft - 2.4x 10 6

0.0075-in. Trip
@ x/L = 0.3

Run # 93

Windward View

Model # 2

B F @ 20 °

(z = 40 °

Reoo/ft - 1.9x 106

0.0075-in. Trip
@ x/L = 0.3

ii ! i h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 94

Windward View

Model # 2

B F @ 20 °

_= 40 °

Re=/ft - 1.1 x 106

0.0075-in. Trip
@ x/L = 0.3

Run # 95

Windward View

Model # 2

B F @ 20 °

cz = 40 °

ReJft - 3.8x 10 6

0.0025-in. Trip
@ x/L = 0.1

Run # 96

Windward View

Model # 2

B F @ 20 °

o_ = 40 °

ReJft - 3.3x 10 6

0.0025-in. Trip
@ x/L = 0.1

h/href
0.0 0.2 0.4 0.6 0.8 1.0

47



Run # 97

Windward View

Model # 1

BF @ 0 o

o¢ = 40 °

Re=/ft - 4.4x 10 6

Baseline Repeat

Run # 98

Windward View

Model # 1

BF @ 0 o

o¢ = 40 °

Re=/ft - 3.8x 10 6

0.0050-in. Trip
@ x/L = 0.5

Run # 102

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 3.8x 106

0.0050-in. Trip
@ x/L = 0.5

iiii ii.....!!!ii!i h/href
0.0 0.2 0.4 0.6 0.8 1.0
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.... • ...... ili̧ .......... i., i : i .......

Run # 103

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 2.5x10 6

0.0050-in. Trip
@ x/L = 0.5

Run # 104

Windward View

Model # 3

BF @ 25 °

cz = 40 °

Re=/ft - 3.3x 106

0.0050-in. Trip
@ x/L = 0.5

Run # 105

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 3.3 x 106

0.0050-in. Trip
@ x/L = 0.3

 }iiiiiiiii I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 106

Windward View

Model # 3

BF @ 25 °

(z = 40 °

ReJft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Run # 107

Windward View

Model # 3

BF @ 25 °

(z = 40 °

Re=/ft - 1.6x 106

0.0050-in. Trip
@ x/L = 0.3

Run # 108

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 3.8x 10 6

0.0050-in. Trip
@ x/L = 0.3

........................... _# ...............................................................:.:_W:_;_r_;;r;{i!{_;:-:-:-:----.-:-!:!i!;ili::-i,:i,:ili;?i.............................................................................................

.... ! h/h ref
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 109

Windward View

Model # 3

BF @ 25 °

= 40 °

Re=/ft - 3.8x 10 6

0.0050-in. Trip
@ x/L = 0.1

Run # 110

Windward View

Model # 3

BF @ 25 °

o: = 40 °

Re=/ft - 2.5x 106

0.0050-in. Trip
@ x/L = 0.1

Run # 111

Windward View

Model # 3

BF @ 25 °

o: = 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.1

!!i' iii' iiii!!!!i! h/h ref
0.0 0.2 0.4 0.6 0.8 1.0

51



Run # 112

Windward View

Model # 3

BF @ 25 °

= 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.1-in.

Run # 113

Windward View

Model # 3

BF @ 25 °

= 40 °

Re=/ft - 1.6x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.1-in.

Run # 114

Windward View

Model # 3

BF @ 25 °

= 40 °

Re=/ft - 1.1 x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.1-in.

....ii  i(i?   iii I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 115

Windward View

Model # 3

BF @ 25 °

o: = 40 °

Re=/ft - 3.8x10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.1-in.

Run # 116

Windward View

Model # 3

BF @ 25 °

¢z = 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/l_, = 0.3

Width- 0.2-in.

Run # 117

Windward View

Model # 3

BF @ 25 °

cz = 40 °

ReJft - 1.6x 10 6

0.0050-in. Trip

@ x/L = 0.3

Width = 0.2-in.

! !i! I h/href
0.0 0.2 0.4 0.6 0.8 1.0

53



Run # 118

Windward View

Model # 3

BF @ 25 °

0¢ = 40 °

Re=/ft - 3.8x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.2-in.

Run # 119

Windward View

Model # 3

BF @ 25 °

0¢ = 40 °

ReJft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Width- 0.4-in.

Run # 120

Windward View

Model # 3

BF @ 25 °

cz = 40 °

Re=/ft - 1.6x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

! i   i ill ! h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 121

Windward View

Model # 3

BF@ 25 °

CZ = 40 °

ReJft - 1.9x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width- 0.4-in.

Run # 122

Windward View

Model # 3

BF @ 25 °

0¢ = 40 °

ReJft - 3.8x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Run # 123

Windward View

Model # 3

BF @ 25 °

CZ = 40 °

ReJft - 3.3x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

!i iiiii!!i!i .!h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 124

Windward View

Model # 3

BF @ 25 °

c_ = 40 °

Re=/ft - 4.4x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width = 0.4-in.

Run # 125

Windward View

Model # 3

BF @ 25 °

= 40 °

ReJft - 1.6x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.1-in.

Repeat

Run # 126

Windward View

Model # 3

BF @ 25 °

= 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip

@ x/L = 0.3

Width - 0.4-in.

Orientation- 0 °

!! J I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 127

Windward View

Model # 3

BF @ 25 °

o¢ = 40 °

ReJft - 3.3x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation - 0 °

Run # 128

Windward View

Model # 3

BF @ 25 °

o: = 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Width = 0.4-in.

Orientation- 15 °

Run # 129

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation- 30 °

I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 130
Windward View
Model # 3
BF @ 25 °
o_= 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3
Width = 0.4-in.
Orientation- 45 °

Run # 131
Windward View
Model # 3
BF @ 25 °
o: = 40 °

ReJft - 2,2x 10 6

0.0050-in. Trip
@ x/L = 0.3
Width- 0.4-in.
Orientation- 45 °

Run # 132
Windward View
Model # 3
BF @ 25 °

= 40 °
ReJft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3
Width - 0.4-in.
Orientation- 45 °

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 133

Windward View

Model # 3

BF @ 25 °

= 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation- 45 °

Run # 134

Windward View

Model # 3

BF @ 25 °

= 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation- 45 °

0.0 0.2 0.4 0.6 0.8 1.0

59

Run # 135

Windward View

Model # 3

BF @ 25 °

c_ = 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Width- 0.4-in.

Orientation- 45 °

h/href



Run # 136

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation- 45 °

Run # 137

Windward View

Model # 3

BF @ 25 °

= 40 °

ReSft - 2.2x 10 6

0.0050-in. Trip
@ x/L= 0.3

Width- 0.4-in.

Orientation- 0 °

Run # 138

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

ReJft - 2.2x 106

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation- 0 °

h/href
0.0 0.2 0.4 0.6 0.8 1.0

6O



Run # 139

Windward View

Model # 3

BF @ 25 °

c_ = 40 °

ReJft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width - 0.4-in.

Orientation - 0 °

Run # 140

Windward View

Model # 3

BF @ 25 °

o_ = 40 °

Re=/ft - 2.2x 10 6

0.0050-in. Trip
@ x/L = 0.3

Width- 0.4-in.

Orientation - 0 °

Run # 141

Windward View

Model # 3

BF @ 25 °

= 30 °

Re=/ft - 1.2x 10 6

iiiiii .......iiii!i! I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 142

Windward View

Model # 3

BF @ 25 °

(z = 30 °

Re=/ft - 2.2x 106

Run # 143

Windward View

Model # 3

BF @ 25 °

¢z = 30 °

Re=/ft - 4.4x 106

Run # 144

Windward View

Model # 1

BF @0 o

cz = 30 °

Re=/ft - 1.1 x 10 6

62



Run # 145

Windward View

Model # 1

BF @ 0 o

c_ = 30 °

Re=/ft - 2.2x 10 6

_ ...... -,_,._._.-,---. _, ..... ___

Run # 146

Windward View

Model # 1

BF @ 0 o

o: = 30 °

Re=/ft - 4.4x 106

Run # 147

Windward View

Model # 2

B F @ 20 °

= 30 °

Re=/ft - 1. I x 10 6

0.0025-in. Trip

@ x/L = 0.1

.- .......... ..............-..:::.;;i. ............... :..:....: ....... :.................. :................

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 148

Windward View

Model # 2

B F @ 20 °

c_ = 30 °

Re=/ft - 1.1 ,x 10 6

Run # 149

Windward View

Model # 2

B F @ 20 °

= 30 °

Re=/ft - 2.2x 106

Run # 150

Windward View

Model # 2

B F @ 20 °

= 30 °

ReJft - 4.4x 10 6

_i iiii_',' ii I h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 151

Windward View

Model # 4

BF @ 30 °

o: = 30 °

Re=/ft - 1.1 x 10 6

Run # 152

Windward View

Model # 4

BF @ 30 °

c_ = 30 °

ReJft - 2.2x 106

Run # 15 3

Windward View

Model # 4

BF @ 30 °

o_ = 30 °

Re=/ft - 4.4x 10 6

...... h/href _
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 154
Windward View
Model # 5
RBF @ 20°
LBF @ 25°
cx= 30°
ReJft - 1.1x 106

Run # 156
Windward View
Model # 5
RBF @ 20°
LBF @ 25°
cx= 30°
ReJft - 2.2x 106

Run # 157
Windward View
Model # 5
RBF @ 20°
LBF @ 25°
cz= 30°
ReJft - 4.4x 106

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 158

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

c_ = 30 °

ReJft - 1.1 x 106

Run # 159

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

(_ = 30 °

Re=/ft - 2.2x 106

Run # 160

Windward View

Model # 6

RBF @ 0 o

LBF @ 25 °

(x = 30 °

ReJft - 4.4x 106

_i !!!!!i!iiiii!_i!! I h/h ref
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 161

Windward View

Model # 1

BF @ 0 o

o: = 20 °

Re=/ft - 1.1 x 10 6

Run # 162

Windward View

Model # 1

BF @ 0 o

o: = 20 °

Re=/ft - 1.1 x 106

Repeat

Run # 163

Windward View

Model # 1

BF @ 0 o

(z = 20 °

Re=/ft - 1.1 x 10 6

Repeat

.............................._i_ii_!_.................................................................................._'_t;j_iiil;ililili;;;i;i;i;i;i:_!:!............................::;i:;;iil;i:_iii_:iiii';:;:::::::........................................................................................i.
iii!g i_,.;...iiiiiiiiiiiiii_i;iiiiiiiiii _:iiiiiii::iiiiiiiliii_ :

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 164

Windward View

Model # 1

BF @0 o

o_ = 20 °

ReJft - 4.4x 10 6

Run # 165

Windward View

Model # 1

BF @ 0 o

o: = 20 °

Re=/ft - 2.2x 10 6

Run # 166

Windward View

Model # 2

B F @ 20 °

o_ = 20 °

Re=/ft- 1.1xl06

iiii!iiii Ihlhref

0.0 0.2 0.4 0.6 0.8 1.0
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Run # 167

Windward View

Model # 2

B F @ 20 °

o¢ = 20 .o

Re=/fl - 2.2x 10 6

Run # 168

Windward View

Model # 2

B F @ 20 °

cz = 20 °

Re=/ft - 4.4x 10 6

Run # 169

Windward View

Model # 3

BF @ 25 °

o¢ = 20 °

Re=/fl - 1.1 x 10 6

h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 170

Windward View

Model # 3

BF @ 25 °

= 20 °

Re=/ft - 2.2x 106

Run # 171

Windward View

Model # 3

BF @ 25 °

= 20 °

Re=/ft - 4.4x 10 6

Run # 172

Windward View

Model # 4

BF @ 30 °

= 20 °

Re=/ft- 1.1xl06

 !!i!!iiiiii!iiii!ii h/href
0.0 0.2 0.4 0.6 0.8 1.0
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Run # 173

Windward View

Model # 4

BF @ 30 °

o: = 20 °

ReJft - 2.2x 106

Run # 174

Windward View

Model # 4

BF @ 30 °

o; = 20 °

ReJft - 4.4x 10 6

i _i__i!ii h/href
0.0 0.2 0.4 0.6 0.8 1.0
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TEST 6739

= 40 °

BF@ 25 °

'73

RUN 1

Reoo/ft = 2.2X 10 6

............................. ...... ::.... .



TEST 6739

(:Z= 40 °

BF@ 25 °

74

RUN 2

Reoo/ft = 4.4X 10 6



TEST 6739
(z= 40°
BF@ 25°

75

RUN 3
Reoo/ft= 1.1X106



TEST 6739
0_= 40°
BF@ 25°

76

RUN 4
Reoo/ft= 2.2Xl 06



TEST 6739
= 30°

BF@ 25°

RUN 5
Reoo/ft= 2.2Xl 06

77



TEST 6739
e:= 30°
BF@ 0°

RUN 6
Reoo/ft= 2.2Xl 06

78



TEST 6739
cz= 40°
BF@ 0°

RUN 7
Reoo/ft= 2.2X106

79



TEST 6739
= 20 °

BF@ 0°

RUN 8

Reoo/ft = 2.2Xl 0 6

80



TEST 6739
= 20°

BF@ 25°

RUN 9
Reoo/ft= 2.2X 106

8]



TEST 6739
o_= 40°
BF@ 25°

RUN 10
Reoo/ft= 2.2Xl 06
Trip@ x/L=0.3, W=0.4", k=0.005"

82



TEST 6739
= 40°

BF@ 25°

RUN 11
Reoo/ft= 4.4X106

Trip@ x/L=0.3, W=0.4", k=0.005" (peeled up)

83



TEST 6739
cz= 40°
BF@ 25°

RUN 12
Reoo/ft= 2.2X106
Trip@ x/L=0.2, W=0.05", k=0.005"

84
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WINDWARD VIEW LEEWARD VIEW
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SIDE VIEW

TEST 6739

(X,= 40 °

RUN 1

Reoo/ft = 2.2Xl 0 6

BF@ 25 °

85



WINDWARD VIEW LEEWARD VIEW

SIDE VIEW

TEST 6739
(x, = 40 °

BF@ 25 °

RUN 2

Reoo/ft = 4.4Xl 06

86



WINDWARD VIEW LEEWARD VIEW
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